
TFTP Broadband Reference i

TFTP Broadband Reference

TFTP Broadband Reference ii

Contents

1 Introduction 1

1.1 Features . 1

1.2 What Is TFTP? . 1

1.3 Standards Compliance . 1

1.4 Supported Platforms . 2

1.5 System Requirements . 2

1.6 Installing on Linux® . 2

1.7 Installing on Solaris® . 2

1.8 Installing on Windows® . 3

1.8.1 If you received a CD . 3

1.8.2 If you received the software electronically . 3

1.9 Uninstalling the software . 3

1.9.1 Linux . 3

1.9.2 Solaris . 3

1.9.3 Windows . 3

2 Configuration 3

2.1 User Interface . 3

2.2 Login . 4

2.3 Server Properties . 5

2.4 Security Overview . 5

2.5 Overview . 5

2.6 Configuration Files . 6

2.7 Policies . 6

2.8 Virtual File Systems . 6

2.9 Virtual Root . 6

2.9.1 Virtual Root Security . 6

2.10 Configuring . 7

2.11 Binary and ASCII Transfers . 7

2.12 TFTP Clients . 8

2.13 TFTP Option Extensions . 8

2.14 Event Notifications . 8

2.14.1 Permanent Subscriptions . 9

2.14.2 Temporary Subscriptions . 9

2.14.3 Event notification format . 9

2.15 Common Solutions . 10

2.16 Expressions . 10

TFTP Broadband Reference iii

2.16.1 Data Types . 11

2.16.2 Operator Reference . 11

2.16.3 Function Reference . 12

2.16.3.1 Date and Time . 12

2.16.3.2 File IO . 14

2.16.3.3 Conditional . 15

2.16.3.4 Type Conversion . 16

2.16.3.5 String Manipulation . 17

2.16.3.6 Encryption and Decryption . 20

2.16.3.7 Miscellaneous . 21

2.16.3.8 Identification . 23

2.16.3.9 Database Inspection . 27

2.17 Performance Tuning . 28

2.17.1 Engine . 28

2.17.2 Hardware . 28

2.17.3 Software . 29

2.18 System Configuration . 29

2.19 Command-line Reference . 29

2.19.1 Commands . 31

2.19.1.1 get_properties . 31

2.19.1.2 set_properties . 31

2.19.1.3 get_config_names . 32

2.19.1.4 info . 32

2.19.1.5 get_functions . 32

2.19.1.6 get_query_responses . 33

2.19.1.7 refresh_config . 33

2.19.1.8 subscribe . 34

2.19.1.9 unsubscribe . 34

2.19.1.10 abort . 34

2.19.1.11 archive_count . 35

2.19.1.12 clear_archive . 35

3 Contact 35

TFTP Broadband Reference iv

List of Tables

1 Event Classes . 9

2 Event Types (Verbs) . 9

3 Configuration Settings . 30

TFTP Broadband Reference 1 / 35

Introduction

TFTP Broadband is a high-performance TFTP server for corporations and broadband providers. Designed for high-volume
environments such as VOIP networks, TFTP Broadband incorporates a unique Asynchronous Client Interleaving feature (ACI)
which allows it to process thousands of simultaneous transfers without the overhead of threading.

TFTP Broadband has a wide array of features and enhancements that makes it attractive in mission critical environments.

Features

• ACI architecture enables the server to handle extreme TFTP loads

• Full support for IPv6, the next generation Internet protocol

• View file transfers in realtime

• Evaluate TFTP requests at runtime for dynamic access rights and dynamic file-overwrite protection

• Evaluate TFTP requests at runtime and assign virtual roots to individual transfers (200 node version and larger)

• Firewall friendly: requires only a single UDP port for all transfers

• Handles very large files (does not suffer from 16/32MB file size bug)

• Central point of administration for multiple TFTP servers and platforms

• TFTP option extension support offers faster and more reliable transfers

• Chroot-jail supports added security on Unix & Linux

What Is TFTP?

The Trivial File Transfer Protocol (TFTP) is a lightweight UDP/IP based protocol designed to support non-interactive file trans-
fers, which makes it ideal for communication with embedded systems and network servers. TFTP is the recommended method
for remote booting, upgrading or configuring various types of networked devices, including X-terminals, routers, switches, SIP-
phones, print servers and more.

Standards Compliance

TFTP Broadband complies with the following RFC’s:

• RFC 1350, Basic TFTP protocol

• RFC 2347, Option Extensions

• RFC 2348, Block size option

• RFC 2349, Timeout & Transfer size Options

TFTP Broadband Reference 2 / 35

Supported Platforms

LINUX

• RHEL x86_64

• RHEL i686

SOLARIS

• Solaris 10 Ultra Sparc

MICROSOFT WINDOWS

• XP - W7, x86 or IA64

System Requirements

RECOMMENDED

• Processor: x86, IA64 or Ultra Sparc

• RAM: 2MB minimum

• DISK: 50MB after operating system is installed

• Networking: TCP/IP & Network Interface Card

Installing on Linux®

The software ships as a single tar.gz file containing RPMs for the gui and daemon. You may elect to install both
packages, or just one or the other depending on your requirements.

The daemon is automatically registered and started during installation. To manually start or stop the daemon, use the /etc/
init.d/tftptd init script.

Installing on Solaris®

Before installing this product you must ensure that the libgcc package is installed. The libgcc package can be
obtained from www.sunfreeware.com.

The software ships as a single tar.gz file containing Solaris package for the daemon and the command line interface. The graphical
interface is not a available on Solaris, but may be independently installed on a Windows or Linux workstation for managing your
Solaris server.

To install the package, first untar the distribution file, then install the packages using the pkgadd command.

You may want to create a startup script to launch the daemon (tftptd) each time the machine is started.

TFTP Broadband Reference 3 / 35

Installing on Windows®

If you received a CD

Insert the CD into the drive. The installation should start automatically. Alternatively, run SETUP.EXE to begin installation.

If you received the software electronically

The TFTP Broadband software package is transmitted as a single file. Copy this file to a temporary directory on your hard drive,
then double-click the file to start the installation process. Setup allows you to specify Full or Custom installations. If this is your
first time installing the TFTP Broadband package you’ll want to choose a Full install.

After selecting the installation directory and program group, the setup program copies the necessary files to your hard disk and
registers the services. Once this is complete you should configure the software by clicking the TFTP Broadband icon on your
desktop.

Uninstalling the software

Linux

Use the distribution specific add/remove software utility or open a super-user terminal window and use rpm -e to remove each
of the packages.

Solaris

Open a su terminal and use pkgrm to remove each of the packages.

Windows

Click the uninstall icon in the TFTP Broadband program group, or, alternately, use the Control Panel’s Add/Remove Programs
applet.

Configuration

User Interface

The TFTP server is configured through the Server Manager user interface. This program allows you to easily connect to and
manage multiple TFTP servers by presenting all available servers as nodes in the left column. Server Manager works equally
well with local and remote TFTP servers, and can be installed separately on an administrator’s workstation.

There are two different views available once you are connected:

The Summary view (server node) shows information about the currently selected TFTP server.

The Activity view displays realtime information about ongoing transfers.

TFTP Broadband Reference 4 / 35

Login

The Server Manager user interface requires the user to login before administering a selected TFTP server. All communication
between the TFTP server and the user interface is encrypted using 56-bit Blowfish encryption to secure the communication.

Note
Because there is no password when the software is first installed, leave the password box blank the first time you login. You
can then set a new password by choosing Tools→Change Password. . . from the menu.

If you forget your password, refer to the Troubleshooting section for instructions on how to reset the login to accept an empty
password.

TFTP Broadband Reference 5 / 35

Server Properties

The TFTP server’s main configuration settings are accessible from the Server Manager user interface. To access these settings,
first connect to your server, then select the server name and choose Edit→Properties. . . from the main menu.

This rest of this section introduces you to security rules and covers techniques for using them.

Security Overview

The TFTP server is versatile and secure, and can be configured to safeguard TFTP traffic on your network. Using expressions,
an administrator can set rules for:

A. Managing client access

B. Assigning a secure Virtual Root

C. Deciding on overwrite permissions

Since network environments and requirements differ, all parameters can be set independently. It’s also possible to bypass security
rules altogether for smaller networks where high security is not a requirement.

This flow diagram illustrates how the security rules work together to provide a secure TFTP environment on the network:

Explanation:

Access You can allow full access to the TFTP server, or set a conditional access rule using an expression.

Virtual Root Assignment Restrict incoming clients to files in a secured directory using a single static Virtual Root, or assign
Run-time roots, where incoming clients are assigned a virtual root based on criteria you specify.

Overwriting Files Can be a simple yes or no setting, or an expression that decides at runtime based on criteria you define.

Other settings:

Option Extensions TFTP extensions offer clients faster and more reliable transfers. Note that your TFTP client must support
option extensions. If in doubt, check the documentation for your client.

Error handling These parameters control the server’s behavior in the event of communication errors.

Data transfer port The TFTP server needs only two UDP port for all file transfers: the standard TFTP port 69, and the port you
specify here. The default value for this setting is 0, which instructs the TFTP server to pick any available port on startup.

Overview

The TFTP server handles device configuration management. The server can deliver statically created configuration files or it can
create configuration files dynamically by leveraging the domain membership system. The TFTP server can work in conjunction
with the DHCP server to completely configure any kind of device that uses TFTP for initial configuration.

TFTP Broadband Reference 6 / 35

Configuration Files

A configuration file is a file that configures specific features of a CPE device during device initialization. The TFTP server can
deliver either pre-built "static" configuration files or dynamically generated files that are built from one or more policies.

Policies

A TFTP policy is a collection of configuration settings. A single configuration is decomposed into a set of policies, where each
policy holds a set of configuration values that enable certain features of the CPE. The TFTP server creates configuration files by
gathering multiple policies, post-processing the configuration settings they hold (if necessary), and delivering the file to the CPE.

The system administrator will initially define a set of domains for each feature to be provisioned, then create one policy for each
domain, and finally fill out the policies with device-specific configuration settings.

Changing a device configuration is then simply a matter of moving the device from one domain to another.

Virtual File Systems

The TFTP server supports a plugin-based virtual file system architecture. Virtual file systems allow the server to accept requests
for files that do not necessarily exist, but instead are created or managed by a file system handler.

Virtual file systems are handled by plugins. When installing the TFTP server you can choose to install any combination of these
virtual file systems:

tftp_fdmanager A virtual file system that allows access to the real local file system

tftp_docsisfdmanager A virtual file system that manages files by processing TFTP policies from a database

When requesting a file from the TFTP server, the file name may be prepended with a virtual file system designator in much the
same way as a URL is prefixed with a protocol designator. Any requested file that does not contain a file system designator
implicitly refers to the virtual file system handler for the local file system.

To download a file from a virtual file system, enter the full URL of the file into your TFTP client. Some examples of virtual file
system requests are:

myfile.bin Implicitly requests a file from the local file system

file://myfile.bin Explicitly requests a file from the local file system

d://myfile.bin Requests a DOCSIS® file from the database virtual file system

db://myfile.bin Requests a regular ASCII file from the database virtual file system

Virtual Root

The virtual root is the root directory that will be used by the TFTP server to store files. Once you’ve populated this directory with
files, your TFTP devices will be able to download them. When you upload files, they will be saved in this directory. The TFTP
server will only allow access to files from the virtual root folder.

Virtual Root Security

The TFTP server is configured to limit clients to the assigned virtual root directory. Both rooted and non-rooted path names are
always extended from the virtual root directory.

A runtime virtual root is a virtual root path specification that is dynamically calculated for each transfer request. To enable
runtime virtual roots, use an expression for your virtual root folder instead of a literal path.

TFTP Broadband Reference 7 / 35

For Example

By using this sample expression as the virtual root path, the TFTP server will put uploaded files into the "upload" folder
root and will look for download files in the "download" folder.

[$UPLOAD() ? "upload" : "download"]

The $UPLOAD function returns true or false. The conditional operator ? evaluates its left-hand side, $UPLOAD ,and
returns the first value on the right hand side if $UPLOAD is true, or the second value on its right hand side if $UPLOAD
is false.

The section on expressions covers all available functions.

Configuring

The TFTP server is versatile and secure, and can be configured to safeguard TFTP traffic on your network. Using the built-in
expression evaluator, an administrator can set rules for:

• managing client access

• assigning a secure Virtual Root

• deciding on overwrite permissions

Since network environments and requirements differ, all parameters can be set independently. It’s also possible to bypass security
rules altogether for where high security is not a requirement. To access the server settings, go to the Settings menu in the
user interface.

The security rules work together to provide a secure TFTP environment on the network. When a client attempts a TFTP upload
or download, the server:

• Checks the Access rule

• Assigns a Virtual root

• If uploading, checks the Overwrite permission

The Access rule is defined by setting the tftp.access.allow key in the system configuration. You can allow full access to
the TFTP server by setting this value to true, or you can enable conditional access using an expression.

After the access rule is checked, the server then decides on the virtual root to be used during the transfer. The virtual root is
set with the tftp.virtual_root configuration setting. You can specify a literal virtual root, such as /var/tftp, or a
conditional virtual root using an expression.

If the client is attempting to upload a file that would overwrite an existing file on the server, the server checks to see if the client
has overwrite permission. Overwrite permission is decided by the tftp.overwrite.allow configuration key. This setting
can be a literal value (true or false) or an expression.

Binary and ASCII Transfers

The TFTP server accepts requests for read and write of files in either binary or ASCII mode (referred to as octet and netascii
modes in the RFC standard). Files that are transferred in binary mode are transferred byte by byte, resulting in a mirror image of
the original file. This mode should be used for transferring any file that is not in a readable text format.

Note that your TFTP client may report a number of bytes transferred that does not correspond to the actual file size when
transferring a file in ASCII mode. This is due to the extra overhead associated with the netascii translation.

TFTP Broadband Reference 8 / 35

TFTP Clients

TFTP clients are typically embedded in hardware devices and may not be directly accessible to an operator or end user. An
embedded system that requires the use of TFTP can often receive the address of its TFTP server and the name of the download
file from the DHCP server. Refer to the DHCP server’s options for information about configuring an embedded system to perform
TFTP downloads.

TFTP Option Extensions

TFTP option extensions are useful additional parameters that offer enhanced TFTP clients more efficient transfers. These exten-
sions are only used if your TFTP client supports them.

Block size An enhanced TFTP client can request a larger block size than the default 512 bytes. Having a larger block size can
result in much faster data transfers. The TFTP server configuration allows you to disable this specific extension, or to set
minimum and maximum allowable block size values.

Timeout An enhanced TFTP client may request a specific timeout value if it has an indication of the network latency or
reliability. The TFTP server configuration allows you to disable this specific extension, or to set minimum and maximum
allowable timeout values.

Transfer size An enhanced client may request to receive the size of a file before downloading. This is useful for clients that
may not be able to receive files larger than a certain size.

Event Notifications

The TFTP server can be configured to notify external services when internal events occur. This external notification operates
over the UDP protocol and is handled by the UDP Publisher plugin.

On startup, the UDP publisher reads a list of event subscribers from a configuration file and starts publishing events to those
subscribers. The subscribers file consists of a set of subscriptions, where each subscription includes a destination ip:port (on
which the subscriber must be listening) as well as a set of event classes the subscriber is interested in.

The UDP publisher is configured through the main configuration file with the settings shown here:

udp_publisher.latency = 300 The publish interval, in microseconds

udp_publisher.max_history = 500 The maximum number of historical events that cen be held. Events older than this
are discarded.

udp_publisher.subscribers.file = udp_subscribers.txt The name of the file which holds subscriber configura-
tions

The default subscribers file is udp_subscribers.txt, and it’s located in the application’s var dir. (/var/lib/tftptd, /var/tftptd
or the Windows program folder)

A sample UDP subscriber file is:

notifies of changes to configuration, domains and policies
endpoint=10.0.0.1:5400
classes=config,domain,policy

notifies of all changes except configuration
endpoint=10.1.2.20:5500
classes=*,!config

If no classes are specified, or the wildcard symbol (*) is specified, the subscriber will be notified of all server events. Receiving
all event notifications from a loaded server can be taxing on the TFTP server. This configuration should be avoided if possible.

The tables below show the classes of events that can be published as well as the types of events types (event types in this case are
actually more akin to verbs):

When subscribing to the transfer class of events, each event will also contain keys and values for the following properties of
the transfer:

TFTP Broadband Reference 9 / 35

Class Description
* All events
subscription Any change to a udp subscriber’s state
config Any change to the application’s configuration settings
transfer Changes in the state of a file transfer

Table 1: Event Classes

Type Description
add A new object has been added
del An object has been deleted
modify An existing object has been modified

Table 2: Event Types (Verbs)

Property Description
id The server’s unique id for this transfer
fd The file descriptor used for this transfer
block The current block number of the transfer
tsize The size of the file being transferred
offset The current position in the file from which data is being read
blksize The block size in use for this transfer
timeout The timeout in use for this transfer
port The client’s port number
eof true or false depending on whether or not the transfer has

completed
overwrite Whether or not the client is allowed to overwrite on upload during this

transfer
start_time The UTC time when this transfer started
ip The ip address of the client
file The fully qualified path name of the file being transferred
req_file The name of the file the client requested when the transfer was

initiated
protocol The protocol used for this tranfer. This indicates the virtual file

system being used.
state The current state of the transfer: need_ack, need_data,

send_ack, send_data, complete, send_oack or unknown
operation Either download or upload
mode Either binary or ascii
status A status message concerning this transfer

Permanent Subscriptions

All subscribers listed in the udp_subscribers file are permanent subscribers. The server will continue to publish events to these
subscribers even if the network indicates that the subscriber is not listening.

Temporary Subscriptions

A temporary subscription can be made through the command line interface. Temporary subscriptions are valid as long as the
subscriber is receiving the server’s event messages.

Event notification format

A subscriber will receive event notifications from the server over the UDP protocol to the ip:port listed in the subscription. Each
packet received corresponds to one event, and uses an ASCII-based key=value format. Multiple key/values are separated with a
single newline character (\n).

A sample event from the TFTP server:

event_type=modify
event_class=domain
event_instance=My Domain
event_time=Mon Jul 28 14:45:26 CEST 2008

Some events may contain more key/value pairs, but the pairs listed above are guaranteed to always be present in any event
notification. The order of key/value pairs is not guaranteed, and may change in the future.

TFTP Broadband Reference 10 / 35

Common Solutions

Logging Transfers

To log file transfers to an ASCII file, by date:

• set the system.log.levels to audit

• set the system.log.targets to file

• set the system.log.target.file to [$DATE() + ".log"]

Disable Uploads

To allow only uploads to the TFTP server, place this expression in the tftp.access.allow setting:

[$DOWNLOAD()]

Upload vs. Download Roots

To specify one virtual root for uploads and another for downloads, place this expression in the tftp.virtual_root
setting:

[$DOWNLOAD() ? "downloads" : "uploads"]

File Redirection

To redirect a transfer to a different file, call the $FILE.NAME(x) function in the tftp.preprocessor setting. For
example:

[$FILE.NAME() == "text.txt" && $FILE.NAME ("newfile.txt")]

NAT Support

To enable support for TFTP through Network-Address-Translation, enter the value 69 for the tftp.transfer_port
setting in your configuration file.

Expressions

TFTP expressions can be used to make runtime decisions about:

• Access to the server

• Ability to overwrite a file when uploading

• The virtual root to be used for the transfer

• The file name to use when creating an ascii log file

The expression evaluator module is used to parse expressions and execute them at runtime. Expressions can be used to implement
business-specific logic that allows the server to vary its response or to make specific runtime decisions at key processing points.

TFTP Broadband Reference 11 / 35

An expression can be used at any place where the Build button is presented. Clicking this button opens the expression
editor:

To denote that a value should be an expression instead of a literal, enclose the value in block characters [].

Data Types

The expression evaluator recognizes the following data types:

Type Description
string Strings are always enclosed in double quotes. "My name is" is an

example of a string.
time The time type is an ISO-standard string representation of a date specified

in a rigid month/day/year format. Oct 1 1992 is an example of a date.
ip address An ip address is specified in dotted-decimal notation. 192.168.1.1 is

an example of an ip address.
integer An integer is signed number specified in decimal form. -1000 is an

example of an integer.
boolean A boolean represents true or false. Booleans are specified using true or

false.
byte sequence A byte sequence is a sequence of 8-bit values that together represent a

single unit. 00-A0-24-2F-10-26 is an example of a byte sequence.
endpoint An endpoint is a string representation of an ip:port pair. "192.168.1.

1:80" is an example of an endpoint.

Operator Reference

The following operators can be used in your expressions:

Operator Description
() Used to change the natural order of precedence among the operators
[] Opening and closing tags for an expression

TFTP Broadband Reference 12 / 35

Operator Description
’ Enclosing literal operands forces interpretation as a native data type
+ addition
- subtraction
/ division
* multiplication
< less than
> greater than
⇐ less than or equal
>= greater than or equal
== is equal
!= is not equal
? : conditional if. . . else
&& logical AND
|| logical OR
! logical NOT
& bitwise AND

bitwise OR +
bitwise XOR ˆ
bitwise inverse -

Function Reference

The expression evaluator supports a wide range of functions that you can use in your expressions.

Date and Time

$DATE ([format])

Arguments Optional ISO-standard strftime arguments

Returns Current date as a string

Description This function returns the current date. The optional format argument allows you to specify an ISO-C strftime
format for the returned value. Information about strftime can be found at various sites on the Internet.

Examples

1. $DATE ()

Returns a string of the form "2002-01-25".

2. $DATE ("%c")

Returns a string with date and time in the current locale format, e.g. "Thu Jul 25 16:56:18 CEST 2007".

$YEAR ([format])

Arguments Optional ISO-standard strftime arguments

Returns Current year as a string

Description This function returns the current year. The optional format argument allows you to specify an ISO-C strftime
format for the returned value. Information about strftime can be found at various sites on the Internet.

TFTP Broadband Reference 13 / 35

Examples

1. $YEAR ()

Returns a string of the form "2007".

2. $YEAR ("%y")

Returns a string containing the year without century, e.g. "07".

$MONTH ([format])

Arguments Optional ISO-standard strftime arguments

Returns Current month as a string

Description This function returns the current month. The optional format argument allows you to specify an ISO-C strftime
format for the returned value. Information about strftime can be found at various sites on the Internet.

Examples

1. $MONTH ()

Returns a string of the form "January".

2. $MONTH ("%b")

Returns a string containing the abbreviated month name, e.g. "Jan".

$DAY ([format])

Arguments Optional ISO-standard strftime arguments

Returns Current month as a string

Description This function returns the current day of the week. The optional format argument allows you to specify an ISO-C
strftime format for the returned value. Information about strftime can be found at various sites on the Internet.

Examples

1. $DAY ()

Returns a string of the form "Thursday".

2. $DAY ("%j")

Returns a string containing the julian day, e.g. "206".

$TIME.UTC ()

Arguments None

Returns Current UTC time as an integer

Description This function returns the current UTC (GMT) time as an integer.

TFTP Broadband Reference 14 / 35

Examples

1. $TIME.UTC()

Returns an integer representing the current UTC time.

$TIME.FORMAT.UTC (integer, [format])

Arguments Current UTC time as an integer

Returns Current UTC time as a string

Description This function returns the current UTC time as a string. The optional format argument allows you to specify an
ISO-C strftime format for the returned value. Information about strftime can be found at various sites on the Internet.

Examples

1. $TIME.FORMAT.UTC($TIME.UTC())

Returns a string of the form "04:58:26 PM".

$TIME.FORMAT.LOCAL (integer, [format])

Arguments Current UTC time as an integer

Returns Current local time as a string

Description This function returns the current local time as a string. The optional format argument allows you to specify an
ISO-C strftime format for the returned value. Information about strftime can be found at various sites on the Internet.

Examples

1. $TIME.FORMAT.LOCAL($TIME.UTC())

Returns a string of the form "04:58:26 PM".

File IO

$FILE.EXISTS (file)

Arguments File name as a string

Returns true if the file exists, false otherwise

Description This function checks for the existence of a file on the local file system.

$VALUE (file,key)

Arguments File name as a string, key to search on as a string

Returns The value associated with the key

Description This function retrieves a single value from a file, using the key argument as an index. The format of the file is:

TFTP Broadband Reference 15 / 35

<default>=some value
key1=some other value
key2=yet another value
...

The key and value can be any data type. The special <default> key can also be listed in this file. If it exists, all non-matching
lookups return this value.

Examples

1. $VALUE ("valid_macs.txt",$HWADDR ())

This expression implies that your file uses hardware addresses as the key.

Conditional

$IF (value,result1,result2)

Arguments Any values

Returns result1 or result2 depending on whether value evaluates to true or false

Description This function is the equivalent of an if. . . then. . . else construct.

Examples

1. $IF (true,"yes","no")

Returns the string "yes".

$COND (expression,expression,. . .)

Arguments Any number of sub-expressions

Returns The first true sub-expression, or the last false if all sub-expressions are false.

Description This function is somewhat similar to the LISP COND function. The first sub-expression that returns any valid
value except false will be the return value of this function. The invalid data type always evaluates to false, so a
function that returns invalid does not stop the processing of sub-expressions.

Generally the last subexpression listed should be the default value in case ←↩
all other subexpressions are false.

Examples

1. $COND ($STARTSWITH ("haystack","hello"),STARTSWITH("haystack","hay")

Returns the string "hay".

TFTP Broadband Reference 16 / 35

Type Conversion

$BOOL (value)

Arguments Any value

Returns true or false

Description This function converts any type to a boolean result.

Examples

1. $BOOL ("true")

This returns a boolean value of true.

$INT (value)

Arguments Any value

Returns integer

Description This function attempts to convert value to an integer. value can be any data type, but the conversion is not
guaranteed to succeed because the type or format of value may not facilitate conversion.

Examples

1. $INT ("206")

Returns an integer whose value is 206.

$IP (value)

Arguments Any value

Returns ip address

Description This function attempts to convert value to an ip address. value can be any data type, but the conversion is not
guaranteed to succeed because the type or format of value may not facilitate conversion.

Examples

1. $IP ("192.168.1.1")

Returns an IP address having the value 192.168.1.1.

$BYTES (value)

Arguments Any value

Returns byte sequence

Description This function attempts to convert value to a byte sequence. value can be any data type, but the conversion is
not guaranteed to succeed because the type or format of value may not facilitate conversion.

TFTP Broadband Reference 17 / 35

Examples

1. $BYTES ("00-A0-24-2F-10-26")

Returns a sequence of bytes having the value 00-A0-24-2F-10-26.

$STR (value, [delimiter])

Arguments Any value

Returns string

Description This function converts value to a string. It is always possible to convert a non-string type to a string. Use the
optional delimiter argument to specify your own delimiter for data types that support them.

Examples

1. $STR (00-A0-24-2F-10-26)

Returns a string whose value is "00-A0-24-2F-10-26".

2. $STR ($HWADDR(),"_")

Returns a string whose value is "00_A0_24_2F_10_26".

$TEXT(bytes)

Arguments Byte sequence

Returns string

Description This function converts a byte sequence to a human-readable string. This function is not the same as the $STRING
function, which simply gives a text representation of the bytes.

Examples

1. $TEXT (’68-65-6C-6C-6F-00’)

Returns a string whose value is "hello".

String Manipulation

$UCASE (string)

Arguments source string

Returns string in upper case

Description This function returns the input string as all upper case. If this function is called with an argument that is not of
type string, the argument is returned unmodified.

Examples

1. $UCASE ("hello, world")

Returns a string whose value is "HELLO, WORLD".

$LCASE (string)

TFTP Broadband Reference 18 / 35

Arguments source string

Returns string in lower case

Description This function returns the input string as all lower case. If this function is called with an argument that is not of
type string, the argument is returned unmodified.

Examples

1. $UCASE ("HELLO, WORLD")

Returns a string whose value is "hello, world".

$LEFT (string, count)

Arguments source string, number of elements

Returns string

Description This function returns the left-most count elements from string. The string argument need not be of type
string; it may be any type that can be converted to a string.

Examples

1. $LEFT ("hello, world",5)

Returns a string whose value is "hello".

2. $BYTES ($LEFT (’00-A0-24-2F-10-26’,5))

The result is a hardware address containing two bytes, 00 and 0A.

$RIGHT (string, count)

Arguments source string, number of elements

Returns string

Description This function returns the right-most count elements from string. The string argument need not be of type
string; it may be any type that can be converted to a string.

Examples

1. $RIGHT ("hello, world",5)

Returns a string whose value is "world".

2. $BYTES ($RIGHT (’00-A0-24-2F-10-26’,5))

The result is a hardware address containing two bytes, 00 and 0A.

$MID (string, count, pos)

Arguments source string, number of elements, starting position

Returns string

Description This function returns count elements from string, starting at position pos. The pos argument specifies the
zero-based index of the starting character.

TFTP Broadband Reference 19 / 35

Examples

1. $MID ("hello, world",1,4)

Returns a string containing "ello".

2. $MAC ($MID (00-A0-24-2F-10-26,3,5))

The result is a hardware address containing two bytes, A0 and 24.

$LEN (value)

Arguments any value

Returns integer

Description This function computes the length of the input value, in bytes

Examples

1. $LEN ("hello, world")

Returns the integer valule 12.

$INSTR (string, substring)

Arguments string, search string

Returns integer

Description This function searches string for the first occurence of substring and returns the zero-based index of the
position at which substring appears in string. Returns -1 if substring doesn’t appear in string.

Examples

1. $INSTR ("hello, world","wo")

Returns the integer valule 7.

$BASE64.ENCODE (byte sequence)

Arguments byte sequence

Returns string

Description This function encodes the byte sequence argument as a base-64 string.

Examples

1. $BASE64.ENCODE (01-11-11-11-11-11-11)

Returns a string containing "AREREREREQ==".

$BASE64.DECODE (string)

Arguments string

TFTP Broadband Reference 20 / 35

Returns byte sequence

Description This function decodes the string from base-64 to a byte sequence.

Examples

1. $BASE64.DECODE ("AREREREREQ==")

Returns the byte sequence 01-11-11-11-11-11-11.

$STARTSWITH (haystack, needle)

Arguments string, string

Returns string or invalid

Description This function returns needle if haystack begins with needle, otherwise it returns invalid. This function is useful
in conjunction with the LISP-style COND function for creating flow control.

Examples

1. $STARTSWITH ("haystack","hay")

Returns the string "hay"

Encryption and Decryption

$ENCRYPT (byte sequence)

Arguments byte sequence

Returns byte sequence

Description This function encodes the byte sequence with the server’s shared system key. The encoded value is an even
multiple of 8 bytes with an 8-bit length prefix.

Examples

1. $ENCRYPT (01-A0-24-20-2F)

Returns a byte sequence representing the encrypted input argument.

$DECRYPT (byte sequence)

Arguments byte sequence

Returns byte sequence

Description This function decodes the byte sequence with the server’s shared system key. The length of the input argument
must be an even multiple of 8 bytes with an 8-bit length prefix.

Examples

1. $DECRYPT (01-A0-24-20-2F)

Returns a byte sequence representing the unencrypted input argument.

$SENCRYPT (string)

TFTP Broadband Reference 21 / 35

Arguments string

Returns byte sequence

Description This function encodes the string argument with the server’s shared system key. The encoded value is an even
multiple of 8 bytes with an 8-bit length prefix.

Examples

1. $SENCRYPT ("hello, world")

Returns a byte sequence representing the encrypted string.

$SDECRYPT (byte sequence)

Arguments byte sequence

Returns string

Description This function decodes the byte sequence with the server’s shared system key. The length of the input argument
must be an even multiple of 8 bytes with an 8-bit length prefix.

Examples

1. $SDECRYPT (01-A0-24-20-2F)

Returns the decrypted string.

$MD5 (byte sequence)

Arguments byte sequence

Returns byte sequence

Description This function computes an MD5 hash of the input argument.

Examples

1. $MD5 (01-A0-24-20-2F)

Returns the md5 hash.

Miscellaneous

$USLEEP (usec)

Arguments integer

Returns nothing

Description This function causes the server to pause for usec microseconds.

TFTP Broadband Reference 22 / 35

Examples

1. $USLEEP (1000)

Pauses for 1000 microseconds and returns no value.

$EVAL (string)

Arguments any valid expression syntax

Returns result of expression execution

Description This function parses and executes the input string as an expression.

Examples

1. $EVAL ("DATE()")

Calls the $DATE() function and returns its value.

$LOG (value)

Arguments any value

Returns nothing

Description This function prints an audit message in the system log containing value.

Examples

1. $LOG ("Hello, World")

Logs "Hello, World" to the system log.

$MATCH (haystack, needle)

Arguments A haystack and a needle

Returns haystack if needle is found, otherwise unknown

Description This function performs wildcard matching on haystack using needle. The result can always be evaluated as
a boolean, but in some cases it may be preferable to use the native result type such as with the COND function.

Examples

1. $MATCH ("Hello, World","Hello*")

Returns "Hello, World".

$UNKNOWN ()

Arguments None

Returns The unknown data type

Description This function returns data type unknown. This can be useful to explicitly induce an expression to fail.

TFTP Broadband Reference 23 / 35

Examples

1. $UNKNOWN ()

Returns the unknown data type.

Identification

$SRC.HOSTNAME()

Arguments None

Returns string

Description This function returns the unqualified name of the host requesting service from this TFTP server. This function can
cause a perform degradation because it performs a reverse DNS lookup.

Examples

1. $SRC.HOSTNAME ()

The result is the short name of the host requesting service.

$SRC.FQDN()

Arguments None

Returns string

Description This function returns the fully qualified name of the host requesting service from this TFTP server. This function
can cause a perform degradation because it performs a reverse DNS lookup.

Examples

1. $SRC.FQDN()

The result is the fully qualified name of the host requesting service.

$SRC.IP()

Arguments None

Returns ip address

Description This function returns the ip address of the host requesting service from this TFTP server.

Examples

1. $SRC.IP ()

The result is the ip address of the host requesting service.

$SRC.PORT()

TFTP Broadband Reference 24 / 35

Arguments None

Returns integer

Description This function returns the port number in use by the host requesting service from this TFTP server.

Examples

1. $SRC.PORT()

The result is the port number used by the remote host.

$DST.IP()

Arguments None

Returns ip address

Description This function returns the ip address of the interface on which the transfer request was received. Unless you
specifically configure an address using the tftp.engine.listen_on setting in the configuration file, the returned address will
always be zero.

Examples

1. $DST.IP ()

The result is the ip address on which the transfer request was received.

$DST.PORT()

Arguments None

Returns integer

Description This function returns the port number on which the initial transfer request was received. Unless you specifically
configure a port using the tftp.engine.listen_on setting in the configuration file, this value will always be zero.

Examples

1. $DST.PORT()

The result is the port on which the initial transfer was received.

$FILE.NAME([optional name])

Arguments None or string

Returns string or nothing

Description When called with no arguments, this function returns the name of the file requested by the TFTP client. When
called with a string argument, this function changes the name of the file requested by the TFTP client.

Tip
You can use this function in the tftp.preprocessor expression to dynamically redirect clients to a different file.

TFTP Broadband Reference 25 / 35

Examples

1. $FILE.NAME()

The result is the name of the file requested by the TFTP client.

2. $FILE.NAME(somefile)

Changes the requested file name to somefile.

$FILE.FQPN()

Arguments None

Returns string

Description This function returns the fully qualified path name of the file to be used in the transfer.

Examples

1. $FILE.FQPN()

The result is the fully qualified name of the file to be transferred.

$FILE.SIZE()

Arguments None

Returns integer

Description This function returns the size of the file to be transferred.

Examples

1. $FILE.SIZE()

The result is the size of the transfer file.

$TSIZE()

Arguments None

Returns integer

Description This function returns the transfer size reported by the TFTP client. If no transfer size was provided, this function
returns 0.

Examples

1. $TSIZE()

The result is the size of the file to be transferred.

$BLKSIZE()

Arguments None

TFTP Broadband Reference 26 / 35

Returns integer

Description This function returns the block size requested by the TFTP client. If no block size was requested, this function
returns the default size of 512.

Examples

1. $BLKSIZE()

The result is the block size requested.

$TIMEOUT()

Arguments None

Returns integer

Description This function returns the timeout requested by the TFTP client. If no timeout was was requested, this function
returns the system default timeout.

Examples

1. $TIMEOUT()

The result is the block size requested.

$BINARY()

Arguments None

Returns boolean

Description This function returns true if the transfer is to use binary mode, false if the transfer is to use ASCII mode.

Examples

1. $BINARY()

The result is true or false.

$ASCII()

Arguments None

Returns boolean

Description This function returns true if the transfer is to use ASCII mode, false if the transfer is to use binary mode.

Examples

1. $ASCII()

The result is true or false.

$UPLOAD()

TFTP Broadband Reference 27 / 35

Arguments None

Returns boolean

Description This function returns true if the transfer is an upload, false if the transfer is a download.

Examples

1. $UPLOAD()

The result is true or false.

$DOWNLOAD()

Arguments None

Returns boolean

Description This function returns true if the transfer is a download, false if the transfer is an upload.

Examples

1. $DOWNLOAD()

The result is true or false.

Database Inspection

$DB.KEYVALUE(class, subclass, key)

Arguments A class, subclass and key. class and subclass can be any value, and key should be unique within class
and subclass unless you explicitly want multiple values for a single key.

Returns The value associated with the key

Description This function allows you to find a value associated with a key in the associations table. Associations are useful
for assigning arbitrary values for use by the server.

The value stored in an association is always a string, but the return value of this function will be automatically converted
to the required data type where possible.

Examples

1. $DB.KEYVALUE ("geolocation","gps",$RELAY.IP())

The result is a string containing the gps coordinates of the relay agent.

2. $DB.KEYVALUE ("VLAN","VLAN-ID",$HWADDR())

Returns a vlan identifier for the specified hardware address.

$DB.KEYVALUE.EXISTS(class, subclass, key, return)

Arguments A class, subclass, key and return value

Returns return if the association exists, otherwise unknown

TFTP Broadband Reference 28 / 35

Description This function allows you to check if an association exists. It does not return the value of the association, but rather
it returns return if the association exists.

Examples

1. $DB.KEYVALUE.EXISTS ("VLAN","VLAN-ID",$HWADDR(),16777215)

Returns 16777215 if the association exists, otherwise unknown.

$DB.KEYVALUE.MANAGED_RANGE(class, subclass, key, start, end)

Arguments A class, subclass and key for creating and managing associations. Start and end values for the range to be created
and managed.

Returns The value associated with the key. If no value is associated, one is created.

Description This function lets the server manage associations for you. By specifying a start and end range, the server can
create associations as needed and return the value. If an association exists but is disabled, this function returns unknown.

Examples

1. $DB.KEYVALUE.MANAGED_RANGE ("VLAN","VLAN-ID",$HWADDR(),0,100)

Returns a persistent vlan id between 0 and 100, inclusive.

Performance Tuning

The TFTP server includes many configuration settings that can be used to increase the performance of the server. Changing these
settings can result in drastic performance improvements, but care should be taken to keep the system as a whole in balance. In
particular, all high throughput sub-systems should be tuned to process data fast enough to keep up with the other high throughput
sub-systems.

Note
One tell-tale sign of a sub-system not keeping up with another sub-system is when your system event log shows the error
"Failed to send command X to task Y. Command queue overflow."

Engine

The TFTP server is designed for extremely low latency, but generating dynamic configuration files detracts from the server’s
performance. The fastest possible speed is obtained with static configuration files.

Hardware

We have specific hardware recommendations (available separately), but in general the following specifications should be consid-
ered:

• CPU speed

• Number of CPUs and CPU cores

• Hard drive throughput

TFTP Broadband Reference 29 / 35

• Amount of RAM

• L1 and L2 cache size

• Number of memory controllers

• NIC speed

All of these factors make a difference in the speed of the TFTP engine.

Software

• Linux® and Solaris® perform better than Windows®

• Other processes should minimize use of CPU and memory

• Real hardware is faster than virtualized hardware

System Configuration

The TFTP server stores process-wide configuration settings in an ASCII test file. Most of these settings are available through the
user interface, but some can only be accessed by directly editing the text file with an external editor. If you edit this file with an
external editor you must restart the TFTP server process.

On Windows The configuration file is located in the TFTP server’s program directory

On Linux The configuration file is located under the /etc/tftpt directory

On Solaris The configuration file is located under the /usr/local/etc/tftpt directory

Note
It’s possible to tell the service to use a different configuration file by passing a command line parameter when starting the
service. See the Service Startup section for more information.

The table below shows the complete set of configuration file settings for the TFTP server.

Command-line Reference

The TFTP server package includes tftpti, a utility that provides a remote command line interface for the TFTP server. You
can use tftpti to remotely administer most aspects of the TFTP server, including provisioning devices.

The tftpti program defaults to connecting to the TFTP server on localhost, but can also be used to connect to a TFTP server
across a network. Run tftpti --help for a list of available arguments.

Once connected, the server accepts single or multi-line text commands and issues responses. To issue a command, simply type
the command on a line and press ENTER on a new line to have the command executed.

Commands come in three forms: commands without arguments, commands with one argument, and multi-argument commands.

Commands without an argument can be executed by simply typing in the command name and pressing ENTER on a new line, as
shown below:

info
[ENTER]

Commands with one argument usually include the argument as part of the command. The admin_password command is an
example of this:

TFTP Broadband Reference 30 / 35

Key Data
Type

Description

rconsole.encryption boolean When true, specifies that the remote
console should encryption all traffic.

rconsole.listen_on endpoints A list of address:port endpoints the
remote console should listen on.

rconsole.password byte se-
quence

The administrator password, in
encrypted form.

rconsole.port integer The default port the remote console
should listen on.

rconsole.private_key_path string The path to the private key file.
rconsole.max_select_count integer Specifies the maximum number of

records that can be returned in a
command line query.

rconsole.force_commit_after_select boolean When true, forces a commit after
every select. The default is false.

system.db.path string The path where the database is
located.

system.db.cache_buffers integer The number of cache buffers to use
for database access.

system.db.name string The name of the database this
application should use.

system.db.page_size integer The page size to use (in bytes) when
connecting to the database.

system.db.password string The password to use when
connecting to the database.

system.db.secondary_files.count integer The maximum number of secondary
files the database should use (if
supported by the database).

system.db.soft_vs_hard_commit_ratio integer The maximum soft commits to the
database before a hard commit is
required.

system.db.statements.file string The path name of the file containing
SQL select statements to be
precompiled.

system.db.table_groups.file string The name of the file containing
mappings between SQL tables and
precompiled statement groups.

system.db.user string The user name to use when
connecting to the database.

system.db.versions_path string The path containing the dsql version
files.

system.limits.max_open_files integer The maximum number of files that
may be opened at one time.

system.log.facility string The facility with which syslog
messages are logged.

system.log.levels string A list of names specifying the types
of messages to log (er-
ror,warning,info,audit,debug,verbose).

system.log.targets string A list of output devices for logging
(stdout,eventlog,rsyslog,file).

system.log.target.file string The fully qualified path to a log file.
Used when system.log.targets
includes file.

system.log.target.rsyslog endpoint The hostname or address of a
remote syslog server. Used when
system.log.targets includes rsyslog.

system.plugins string A list of plugins this process should
load. This can be any combination
of directories, relative paths or fully
qualified paths.

system.priv.chroot_path string The path to use when changing the
process root.

system.priv.gid integer The group id this process should
assume.

system.priv.uid integer The user id this process should
assume.

system.shared_key byte se-
quence

A secret key used to authenticate
cooperating servers.

system.storage.path string The path to use for general-purpose
storage.

udp_publisher.latency integer The interval, in msec, at which the
UDP publisher should publish
historical events.

udp_publisher.max_history integer The maximum number of historical
events the UDP publisher may hold
at any time.

udp_publisher.subscribers.file string The name of a file that holds a list
of subscribers to receive event
notifications over udp.

ipv6.enable boolean When true, the server’s general
communication subsystems will
attempt to use ipv6 if available.

provisioner.account.name expression An expression that produces an
account name for use by the
provisioner.

tftp.virtual_root string/expr The virtual root directory.
tftp.virtual_root.enforce boolean Deprecated; vroot is always

enforced.
tftp.transfer_port integer The port on which to multiplex tftp

file transfers.
tftp.overwrite.allow boolean/exprWhether or not an upload may

overwite an existing file.
tftp.access.allow boolean/exprWhether or not a given client is

allowed access to this service.
tftp.upload.delete_partial boolean Whether or not to delete partial files

after a failed upload.
tftp.upload.create_paths boolean Whether or not the server will

create any needed paths in order to
accept an upload.

tftp.upload.permissions integer The permissions to be set for an
uploaded file.

tftp.timeout integer The default timeout to use when
transferring files.

tftp.min_timeout integer The minimum timeout a client is
allowed to negotiate.

tftp.max_timeout integer The maximum timeout a client is
allowed to negotiate.

tftp.min_blocksize integer The minimum block size a client is
allowed to negotiate.

tftp.max_blocksize integer The maximum block size a client is
allowed to negotiate.

tftp.max_retransmits integer The maximum number of
retransmits before aborting a
transfer.

tftp.allow_timeout_option integer Whether or not a client is allowed to
negotiate for a timeout value.

tftp.allow_blocksize_option integer Whether or not a client is allowed to
negotiate for a block size value.

tftp.allow_tsize_option integer Whether or not a client is allowed to
receive the file size before starting a
download.

tftp.preprocessor string/expr Expressions for modifying client
requests at runtime.

tftp.massage_filenames boolean Whether or not the server should
check for suspicious-looking file
names.

tftp.engine.listen_on string A list of endpoints the tftp engine
should listen on.

tftp.engine.port integer The default port the engine should
listen on if one is not specified.

tftp.fdm.db.docsis_defs string An alternate directory for locating
docsis definition files.

Table 3: Configuration Settings

TFTP Broadband Reference 31 / 35

admin_password=mynewpassword
[ENTER]

Commands that can potentially accept multiple arguments are specified with the command first, followed by zero or more
arguments. For example, the set_properties command accepts multiple arguments:

set_properties
system.log.targets=file
system.log.target.file=myfile.log
[ENTER]

The server always responds after each command with a set of key=value pairs. When the response includes multiple records,
each record is delimited by a dash character (-) on a line by itself.

The server always appends a return code to the end of its output using a key=value pair. For example, when an operation succeeds,
the last data returned is code=ack. If an error occured during processing, the server code=nak and message=x, where x is
an error message.

The rest of this chapter contains documentation for all commands the TFTP server accepts.

Commands

get_properties

Description This command returns all configuration values from the server’s main configuration file.

Shorthand None

Arguments None

Returns Server configuration settings

Example

get_properties
[ENTER]

ipv6.enable=true
provisioner.account.name=[$DECRYPT ($BASE64.DECODE ($FILE.NAME()))]
rconsole.encryption=false
rconsole.password=
<output clipped for brevity>
code=ack

set_properties

Description This command sets one or more configuration values in the server’s main configuration file. Changes take effect
immediately.

Shorthand None

Arguments Key/values to change

Returns Nothing

Example

set_properties
provisioner.account.name=[$DECRYPT ($BASE64.DECODE ($FILE.NAME()))]
[ENTER]

code=ack

TFTP Broadband Reference 32 / 35

get_config_names

Description Display a list of configuration keys supported by the application.

Shorthand None

Arguments None

Returns A list of supported configuration keys

Example

get_config_names
[ENTER]

ddns.default_server=name or address - The hostname or address of the default dns server ←↩
to use for ddns updates.

ddns.default_ttl=int - The default ttl to use for ddns updates.
<output clipped for brevity>
code=ack

info

Description Display various data about the product, machine and software registration.

Shorthand None

Arguments None

Returns Various data

Example

info
[ENTER]

_activation_code=
_company=XYZ Corporation
_edition=NFR Edition - NOT FOR RESALE
_name=TFTP Turbo
_product_id=20
_user=John Doe
build=1503
max_bindings=10000
name=offset-vm
platform=Windows NT 5.1
version=4.1
code=ack

get_functions

Description Display a list of functions that can be used in expressions.

Shorthand None

Arguments None

Returns A list of supported functions

TFTP Broadband Reference 33 / 35

Example

get_functions
[ENTER]

BASE64.DECODE=No description
BASE64.ENCODE=No description
BOOL=No description
BOOTFILE=No description
<output clipped for brevity>
code=ack

get_query_responses

Description Displays a list of acceptable queries the TFTP engine will accept and their pre-determined responses.

Shorthand None

Arguments None

Returns A set of queries and responses

Example

get_query_responses
[ENTER]

config_port=3079,clear
query_ping=pong
query_rconsole_port=3079,clear
code=ack

refresh_config

Description Re-reads the configuration settings from the application’s configuration file.

Shorthand None

Arguments None

Returns Nothing

Example

refresh_config
[ENTER]

code=ack

TFTP Broadband Reference 34 / 35

subscribe

Description Create a new temporary subscription for receiving notifications of file transfers. When subscribing, the tag value
can be anything you want; it will be reflected back to you with each publication. The endpoint argument can be either
an IPv4 or IPv6 endpoint.

Shorthand <none>

Arguments endpoint, class, tag

Returns Nothing

Example

subscribe
endpoint=192.168.1.50:20000
class=transfer
tag=mytag
[ENTER]

code=ack

unsubscribe

Description Cancels a temporary subscription. The subscriber is notified of the subscription cancellation.

Shorthand <none>

Arguments endpoint

Returns Nothing

Example

unsubscribe
endpoint=192.168.1.50:20000
[ENTER]

code=ack

abort

Description Cancels a transfer. The TFTP client is notified of the cancellation.

Shorthand <none>

Arguments id

Returns Nothing

Example

abort
id=256
[ENTER]

code=ack

TFTP Broadband Reference 35 / 35

archive_count

Description View the total number of events in the event archive.

Shorthand <none>

Arguments none

Returns Nothing

Example

archive_count
count=50
[ENTER]

code=ack

clear_archive

Description Clear all events in the event archive.

Shorthand <none>

Arguments none

Returns Nothing

Example

clear_archive
[ENTER]

code=ack

Contact

Weird Solutions
Box 101
18622 Vallentuna
SWEDEN
tel: +46 8 758 3700
e-mail: info at weird-solutions.com
Copyright© 1997-2015, Weird Solutions, Inc.

	Introduction
	Features
	What Is TFTP?
	Standards Compliance
	Supported Platforms
	System Requirements
	Installing on Linux®
	Installing on Solaris®
	Installing on Windows®
	If you received a CD
	If you received the software electronically

	Uninstalling the software
	Linux
	Solaris
	Windows

	Configuration
	User Interface
	Login
	Server Properties
	Security Overview
	Overview
	Configuration Files
	Policies
	Virtual File Systems
	Virtual Root
	Virtual Root Security

	Configuring
	Binary and ASCII Transfers
	TFTP Clients
	TFTP Option Extensions
	Event Notifications
	Permanent Subscriptions
	Temporary Subscriptions
	Event notification format

	Common Solutions
	Expressions
	Data Types
	Operator Reference
	Function Reference
	Date and Time
	File IO
	Conditional
	Type Conversion
	String Manipulation
	Encryption and Decryption
	Miscellaneous
	Identification
	Database Inspection

	Performance Tuning
	Engine
	Hardware
	Software

	System Configuration
	Command-line Reference
	Commands
	get_properties
	set_properties
	get_config_names
	info
	get_functions
	get_query_responses
	refresh_config
	subscribe
	unsubscribe
	abort
	archive_count
	clear_archive

	Contact

